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For weakly coupled expanding maps on the unit circle, Bricmont and Kupiainen
showed that the Sinai-Ruelle-Bowen (SRB) measure exists as a Gibbs state. Via
thermodynamic formalism, we prove that this SRB measure is indeed the unique
equilibrium state for a Hölder continuous potential function on the infinite
dimensional phase space. For a more general class of lattice systems that are
small perturbations of the uncoupled map lattice, we present the variational
principle, the entropy formula, and the formula for the potential function for
the SRB measures. For coupled map lattices with nearest neighbor interactions,
we give an explicit formula of the potential function for the SRB measure and
consequently, obtain the entropy in terms of coupling parameters.
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1. INTRODUCTION

During the past years, many efforts have been made to extend the concept
of the SRB-measure from finite dimensional smooth dynamical systems
to spatially extended infinite dimensional dynamical systems. (4, 6–8, 14, 17, 20)

In particular, for a general class of weakly coupled expanding maps on the
unit circle, Bricmont and Kupiainen showed that the SRB measure exists as
a Gibbs state on a phase space of a mixed type: lattice spin systems with
both finite spins and infinite spins (a compact metric space). Their proof
was general enough to include the case where the coupling is not spatially
translation invariant. However, using this approach of construction of
the SRB measure, it is difficult to verify that the measure satisfies the



variational principle and to obtain the (spatiotemporal) entropy of coupled
map lattices.

In this paper, we first show that indeed, the SRB measure constructed
in ref. 7 satisfies the variational principle by using a more traditional
approach: constructing symbolic representations of weakly coupled map
lattices using the Markov partition. This approach was used in ref. 20
to establish similar results for weakly coupled hyperbolic systems. The
advantage of using this approach here is that it is much simpler since the
local map has only an expansive direction even though we have to deal
with the non-invertibility of the map. The another advantage is that we can
obtain an explicit entropy formula in terms of coupling parameters.
Finally, with only minimal changes to the proof presented in ref. 16, this
approach will enable us to obtain the smooth dependence of the SRB
measure on the system when the coupled map lattice varies and calculate its
derivative, i.e., the linear response function.

The lattice systems we consider here are slightly more general than the
standard coupled map lattices. Our model is described by a small pertur-
bation of the uncoupled system F, not necessarily in the form of a compo-
sition G p F with G a diffeomorphism of the phase space. We note that
even on the unit circle, a perturbation of an expanding map f can not in
general, be expressed in the form G p f with G a diffeomorphism of the
circle. With potential applications in mind, our last section deals with
coupled map lattices only.

The precise description of the lattice system and a summary of main
results of the paper are given in Section 2. After a brief introduction of the
SRB-measure for an expanding circle map, we show the existence of such
measure for the model. The strategy is to extend thermodynamic formalism
to lattice dynamical systems and prove desired results for lattice spin
systems of equilibrium statistical mechanics. In order to have symbolic
representations of lattice dynamical systems, we prove a structural stability
theorem for our lattice systems in Section 3. We prove that there is a
conjugacy between the uncoupled map lattice and the slightly perturbed
one. The conjugacy helps to construct a Markov partition of lattice
dynamical systems and obtain the corresponding lattice spin systems.
Section 4 contains the extension of thermodynamic formalism to lattice
dynamical systems. The results of Sections 3 and 4 are then applied to
show that the SRB-measure exists for lattice dynamical systems and is an
equilibrium state satisfying the variational principle. The proof consists
mainly of the construction of the potential function. In the last section, as
an application, we provide further calculation of the potential function in
terms of coupling parameters and subsequently, obtain an explicit formula
of entropy.
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2. PRELIMINARIES

2.1. Lattice Dynamical Systems

Let Zd be the d-dimensional integer lattice. We start with the definition
of the phase space M.

M=ë
i ¥ Z

d
S1

i

with S1
i =S1, i.e., M is the direct product of identical copies of the unit

circle. A Lattice Dynamical System considered in this paper consists of the
phase space M and a map F from M into itself.

In order to study both types of problems: structural stability and
invariant measures of lattice dynamical systems, we need to introduce two
types of metrics on the phase space M.

Definition of Metrics. We denote by r the supremum metric on M.
For any x̄=(xi), ȳ=(yi) ¥ M,

r(x̄, ȳ)=sup
i ¥ Z

d
d(xi, yi),

where d denotes the canonical distance on the unit circle. With the metric
r, M is a Banach manifold modelled on the Banach space lZ

d
:

lZ
d
={x̄=(xi) : sup

i ¥ Z
d

|xi | < ., xi ¥ R}

The Banach space lZ
d

also serves as the universal covering space for M.
When we discuss local properties, such as continuity and differentiability,
of maps on M, we identify these maps with their lifts in this covering space.
The projection function from lZ

d
onto M is denoted by P and we have for

each x̄=(xi) ¥ lZ
d
,

P(x̄)=(exp i2pxi) ¥ M.

The other metric rq on M is in fact, a family of metrics that are com-
patible with the compact topology on M induced by the direct product
structure. It corresponds to the weakg (coordinatewise convergence)
topology in the Banach space lZ

d
. Given a constant 0 < q < 1, x̄=(xi),

ȳ=(yi) ¥ M,

rq(x̄, ȳ)=sup
i ¥ Z

d
q | i|d(xi, yi),
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where

| i|=|i1 |+|i2 |+ · · · +|id |, i=(i1, i2,..., id) ¥ Zd.

Clearly, the lattice dynamical system (M, F) just defined is infinite-
dimensional. A simple example of F is the direct product of identical maps
on S1:

F=ë
i ¥ Z

d
fi

with fi=f being any differentiable (usually, at least C1+a) expanding map
on the circle. The degree of the map f is denoted by p, which means that
every x ¥ S1 has precisely p preimages. We always assume that |fŒ(x)| > 1,
x ¥ S1. In this paper, we consider the dynamics of a special class of maps
that are small perturbations of such map F.

We describe the class of perturbations with the help of these two kinds
of metrics.

Definition of the Perturbation

(C1) Hölder Continuity Condition in the Metric rq. We assume
that F is Hölder continuous with respect to rq for some fixed constant
0 < q < 1. I.e., there exist C1 > 0 and a > 0 such that

rq(F(x̄), F(ȳ)) [ C1ra
q(x̄, ȳ).

This Hölder continuity in the metric rq is slightly weaker than the so-
called the exponential decay property of the perturbation

d(Fi(x̄), Fi(ȳ)) [ Ch | i − k|d(xk, yk),

where Fi is the projection of F on the lattice site i ¥ Zd and all components
of x̄ and ȳ are the same except at the lattice site k (see ref. 15, Lemma 1).
We emphasize that this continuity condition in the metric rq must be
imposed before we can describe other conditions on the derivative operator
of F using its partial derivatives. It is a fact in functional analysis that some
bounded linear functionals on the Banach space lZ

d
can fail to be weakg

continuous and thus, can not be expressed as an infinite sequence using its
values at the weakg basis. (25)

Proposition 1. Assume that F=(Fi)i ¥ Z
d is continuous with respect

to the metric rq. Assume that F is continuously differentiable (C1) and the
sum of partial derivatives ;j ¥ Z

d |“Fi

“xj
|x̄ | < M for some constant M converges
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uniformly in both x̄ and i. Then, the derivative operator DF can be repre-
sented by the infinite matrix (“Fi

“xj
)i, j ¥ Z

d, i.e., for any vector ȳ in the tangent
space of M at x̄

DFx̄ȳ= C
j ¥ Z

d

“Fi

“xj

:
x̄

yj.

Proof. For any given E > 0, we need to show that

1
d
:Fi(x̄+dȳ) − Fi(x̄) − d C

j ¥ Z
d

“Fi

“xj

:
x̄

yj
: < E

when |d| is sufficiently small. For convenience, we introduce a total order in
Zd: i < j whenever | i| < |j |. When | i|=|j|, we use the lexicographic order.
For example, when d=3, (0, 0, 1) < (0, 1, 0) and (0, 0, 3) < (1, 1, 1) <
(3, 0, 0). Let T denote the order preserving one-to-one map from the set of
non-negative integers to Zd. We define a sequence of elements z̄k ¥ M,
k=0, 1, 2, in the following way: Let z̄k(j) be the component of z̄k at lattice
site j ¥ Zd. Then,

z̄k(j)=dyj, when j [ T(k), z̄k(j)=0, when j > T(k).

We have limk Q . x̄+z̄k=x̄+dȳ in the metric rq. Thus,

Fi(x̄+dȳ) − Fi(x̄)=Fi(x̄+z̄0) − Fi(x̄)+ C
.

k=1
[Fi(x̄+z̄k) − Fi(x̄+z̄k − 1)].

Note that x̄+z̄k and x̄+z̄k − 1 differ only at the lattice site T(k). By Mean
Value Theorem, for k=0, 1, 2,...,

Fi(x̄+z̄k) − Fi(x̄+z̄k − 1)=
“Fi

“xT(k)

:
t̄k

(dyT(k))

for some point t̄k between x̄+z̄k and x̄+z̄k − 1 (x̄+z̄−1 — x̄). Thus,

1
d
:Fi(x̄+dȳ) − Fi(x̄) − d C

j ¥ Z
d

“Fi

“xj

:
x̄

yj
:=: C

.

k=0

5 “Fi

“xT(k)

:
t̄k

−
“Fi

“xT(k)

:
x̄

6 yT(k)
: .

Note that for each fixed k, we have

lim
d Q 0

“Fi

“xT(k)

:
t̄k

−
“Fi

“xT(k)

:
x̄
=0
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since t̄k Q x̄ in the metric r as d Q 0 and the convergence of ;j ¥ Z
d |“Fi

“xj
|x̄ | is

uniform in x̄. Therefore,

lim
d Q 0

C
.

k=0

5 “Fi

“xT(k)

:
t̄k

−
“Fi

“xT(k)

:
x̄

6 yT(k)=0. L

(C2) Differentiability Condition. We assume that F is at least C1

with respect to the metric r.

(C3) Small Perturbation Condition. F is C1-close to F. In terms
of partial derivatives, we have

sup
i ¥ Z

d, x̄ ¥ M

|Fi(x̄) − f(xi)|+ sup
i ¥ Z

d, x̄ ¥ M

C
j ¥ Z

d

:“Fi

“xj

:
x̄

−
“Fi

“xj

:
x̄

: < E,

for a small constant 0 < E < 1.

(C4) Decaying Coupling Condition. For i, j ¥ Zd, i ] j,

:“Fi

“xj

: < C3Ee−b |i − j|,

where C3 > 0 and b > 0 are constants.

Remark 1

(1) Conditions (C1), (C2), and (C4) are sufficient for Proposition 1 to
hold.

(2) One can formulate different types of decay conditions other than
using E and b in (C4) for the partial derivatives. However, it seems that the
exponential decay of the coupling between remote lattice sites is necessary
for the study of SRB measures via thermodynamic formalism in later sec-
tions. This exponential decay condition also allows a simple proof of the
Hölder continuity of the conjugating map in the metric rq in the next
section. This type of assumptions appeared in previous papers such as
refs. 4, 6, 7, 12, 15, 16, 20, and 28. Other types of decay of coupling are
also possible when one uses the transfer operator approach (see refs. 14
and 30). But it is unclear if the SRB measure in refs. 14 and 30 will satisfy
the variational principle. The condition (C4) can also be formulated in
terms of the Lipschitz continuity in weighted metrics. (15, 20)

The last condition (C5) concerns the smallness of the derivative of
the perturbation. This condition will not be needed until the proof
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of the uniqueness of SRB measures as an equilibrium state. For x̄=¥

M, i, j ¥ Zd, let

aii(x̄)=
“Fi
“xi

|x̄
fŒ(xi)

− 1 and aij(x̄)=
“Fi

“xj

:
x̄

, i ] j.

(C5) Hölder Condition on the Derivative. For all i, j, k ¥ Zd and
x̄=(xl), ȳ=(yl) ¥ M with xl=yl, l ¥ Zd, l ] k,

|aij(x̄) − aij(ȳ)| < C4Ee−b |i − k|da(xk, yk),

for some constant C4 and 0 < a < 1.
This condition is a little weaker than a similar condition used in ref. 7

(expression (4)) for coupled map lattices and is the same as the one stated
in ref. 20 (expression (7)).

Other Definitions

(1) Spatial Translation Invariance. Let sk
s , k ¥ Zd denote the map

induced by shifts (or translations) on the lattice Zd: (sk
s (x̄))i=xi+k. When

d=1, this is just the leftward shift. F is called shift (or translation)
invariant if F and sk

s commute: F p sk
s =sk

s p F.

(2) Finite Volume Approximation of F. For each finite volume
V … Zd, MV=ê i ¥ V S1

i . Fix a point x̄g=(xg
i )i ¥ Z

d ¥ M. For convenience,
we shall take x̄g=(0)i ¥ Z

d ¥ M, i.e., the origin. The map FV denotes the
following map from MV to itself:

(FV(xV))i=(F(xV, xg
V̂))i, i ¥ V,

where V̂=Zd 0V, the complement of V in Zd. The structural stability
theorem (31) tells us that when the perturbation is sufficiently small, FV is an
expanding map on MV conjugated by a continuous map hV:

FV p hV=hV p FV.

With a little abuse of notation, we also use FV to denote the following
extended map on M:

(FV(x̄))i=˛ (F(xV, xg
V̂))i , i ¥ V

f(xi), i ¥ V̂
(2.1)

i.e., the perturbation is restricted inside the finite volume V. It is easy to
see that whenever F satisfies conditions (C1)–(C5), FV satisfies the same
conditions with the same set of constants.
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2.2. The Sinai-Ruelle-Bowen Measure

For expanding maps on the circle S1, The Sinai-Ruelle-Bowen measure
has many equivalent descriptions. We list two of them whose extensions to
the lattice dynamical systems are discussed in this article.

(1) Weak g Limit of Iterates of Lebesgue Measure. Let A … S1 be
any Borel set, f be a C r, r > 1 expanding map, and l be the normalized
Lebesgue measure (or any probability measure equivalent to l) on the
circle. Then, the following limit exists:

mf(A)= lim
n Q .

l(f−n(A)).

The limiting measure mf is invariant under f: mf(A)=mf(f−1(A)).

(2) Variational Principle. Let C be the set of all invariant proba-
bility measures on S1 with respect to f and hc(f) be the measure theoreti-
cal entropy w.r.t c ¥ C. Then,

sup
c ¥ C

1hc(f)+F
S1

− log |fŒ(x)| dc2=0.

There exists a unique measure mf at which the supremum is attained. Any
probability measure satisfies the equality is called an equilibrium state for
the potential function − log |fŒ(x)|. Definition of an equilibrium measure
for arbitrary continuous function can be found in ref. 29.

The measures obtained from these two procedures are the same and
are called the Sinai-Ruelle-Bowen (SRB) measure for the expanding map f.
The SRB measure can also be defined as the fixed point of the Perron-
Frobenius operator. Another way to define the measure is to construct a
Markov partition for the expanding map and obtain the measure as a
Gibbs state through a sequence of conditional probabilities. (33)

Measures with similar properties exist for other maps, e.g., transitive
Anosov maps. For general C r-expanding (r > 1) maps on closed manifolds,
the description is almost identical. For instance, in our context, FV is an
expanding map on MV. Thus, there exists an SRB-measure mV on MV

which is invariant under FV, absolutely continuous with respect to the
Lebesgue measure, and is mixing. This SRB-measure is the unique
invariant measure satisfies the Variational principle:

hmV
(FV)=F log JFV(xV) dmV, (2.2)
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where hmV
(FV) is the entropy of FV with respect to mV and JFV(xV) is the

Jacobian of FV.
For coupled map lattices, it has been shown in ref. 7 using the transfer

operator method with the cluster expansion technique that the (thermo-
dynamic) limit of the measure mV exists as the volume V goes to Zd. The
limiting measure m is a Gibbs state invariant under F and it is exponen-
tially mixing with respect to both F and ss.

In this article, we will show that the measure m also satisfies the
variational principle. The main results of this paper are the following.

Theorem 1. Assume that the map F satisfies conditions (C1)–(C5)
for sufficiently small E and is translation invariant.

(1) The thermodynamic limit of SRB-measures mV exists. The limit-
ing measure m is invariant and exponentially mixing with respect to both F

and spatial translations: For any Hölder continuous functions f and k in
the metric rq on M,

lim
n+|k| Q .

F
M

f(Fnsk
s x̄) k(x) dm − F

M

f(x̄) dm F
M

k(x) dm=0. (2.3)

(2) The measure m is the unique equilibrium state for a Hölder con-
tinuous (in the metric rq) potential function j(x̄) close to − log |fŒ| under
the Zd+1

+ -action y generated by F and spatial translations. Moreover, the
entropy formula holds:

Py(j)=hm(y)+F j dm=0.

(3) The (spatiotemporal) entropy of y with respect to m is the limit of
the average entropy of FV over the volume V:

hm(y)= lim
V Q Z

d

1
|V|

hmV
(FV).

(4) The potential function j(x̄) of the SRB measure m with respect to
the action y is given by

j(x̄)=−log |fŒ(x0)|+ C
.

n=1

(−1)n

n
a (n)

00 (x̄), (2.4)
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where a (n)
00 (x̄) is the entry of the infinite matrix An corresponding to the

(0, 0) lattice point of Zd × Zd and the matrix A(x̄) is defined by the relation

1“Fi

“xj
(x̄)2

i, j ¥ Z
d
=(diag(fŒ(xi)))(I+A(x̄)).

We outline the steps of the proofs.

Step 1. Prove that the map F and F are conjugate by a continuous
map h. Show this map h has special regularities: it is Hölder continuous in
the metric rq and the conjugating map hV between FV and FV converges to
h uniformly in the metric rq.

Step 2. Pull back the SRB measures mV for the finite dimensional
systems (FV, MV) onto the symbolic representations induced by the
Markov Partition to obtain equilibrium states nV.

Step 3. Show that the equilibrium states as Gibbs states nV converge
to an equilibrium state n on a (d+1)-dimensional lattice spin system. The
potential function for n is obtained by localizing the potential functions
of nV. The uniqueness and the exponential mixing property follow from
special Hölder continuity of this potential function in the metric rq.

Step 4. Push forward the measure n onto M and show that this
measure is the unique equilibrium state for a corresponding potential
function.

Remark 2

(1) The proof of the entropy formula is the same as that for the
coupled hyperbolic attractors and therefore, is omitted.

(2) The construction of the potential function (2.4) first appeared in
ref. 7 (expression (14) on p. 719) for coupled expanding map lattices.

(3) When the local map f is C r for r > 4 and F is restricted to a
C r-neighborhood of F with its partial derivatives up to order 4 satisfying
decay conditions similar to Condition (C4), one can prove that the
conjugating map h depends smoothly on the perturbation F. Consequently,
the potential function j(h(x̄)) in (2.4) and the SRB measure m depend on F

smoothly. Proofs are given for coupled hyperbolic systems in ref. 16 and
are essentially identical for our systems here (only simpler) and thus, are
omitted.
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3. STRUCTURAL STABILITY AND REGULARITY OF THE

CONJUGATING MAP

In this section, we prove structural stability for the map F and prove
the regularity of the conjugating map that will play an important role in
studying invariant measures for such systems. The proof of structural sta-
bility follows closely the one in the finite dimensional case (ref. 31). The
Hölder regularity of the conjugating map is proved via finite dimensional
approximation.

Let P be the projection from the covering space lZ
d

of M onto M=
ên ¥ Z

d S1. Let F̃ and F̃ denote lifts of F and F in the covering space lZ
d
,

respectively, i.e., both F̃ and F̃ are continuous and satisfy

P p F̃=F p P; P p F̃=F p P.

Note that lifts of F and F are not unique. To fix lifts for F and F, we
assume that F̃(0)=0, and r(F̃(0), 0) [ E < 1

2. Under the supremum distan-
ces, a map on M and its lift in lZ

d
are locally identical. For x̄ and ȳ close

in lZ
d
, r(F̃(x̄), F̃(ȳ))=r(F(Px̄), F(Pȳ)). Therefore, if F and F satisfy

conditions (C1)–(C5), F̃ and F̃ satisfy the same conditions with only a
small modification to (C1): (C1) holds for F̃ when r(x̄, ȳ) < 1 in lZ

d
. For

simplicity, we shall use same notations for corresponding objects on M and
its covering space lZ

d
.

Under the conditions (C1)–(C3), the conjugacy between the lifted
maps F̃ and F̃ can be proved by using the fixed point theorem for con-
tracting maps. The conjugacy between F and F follows immediately.

Theorem 2 (Structural Stability). Assume that the map F satis-
fies conditions (C1)–(C3) for a sufficiently small E. Then, F is topologically
conjugate to F: there exists a homeomorphism h: MQM such that

F p h=h p F.

Proof. We first observe that F̃ and F̃ satisfy the following transla-
tion conditions.

F̃(x̄+n̄)=F̃(x̄)+pn̄, F̃(x̄+n̄)=F̃(x̄)+pn̄, (3.1)

where x̄ ¥ lZ
d
, p is the degree of the map f, and n̄ ¥ Zd. The first equation is

obvious. To see that the second equation holds, let ē0=(ni)i ¥ Z
d with ni=0

for all i ] 0 and n0=1. We consider the straight line connecting two points
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x̄ and x̄+ē0 in lZ
d
. Note that the projection of this line onto M=ê i ¥ Z

d S1

is a circle since Px̄=P(x̄+ē0). Since P p F̃=F p P, we have

PF̃(x̄+ē0)=P(F̃(x̄)),

which means

F̃(x̄+ē0)=F̃(x̄)+(mi)i ¥ Z
d

for some integer sequence (mi)i ¥ Z
d, mi ¥ Z. Since F̃(x̄+ē0) is close to

F̃(x̄+ē0)=F̃(x̄)+pē0, we must have

F̃(x̄+ē0)=F̃(x̄)+pē0.

Thus, the second equation in (3.1) follows from the coordinate-wise conti-
nuity (w*-continuity) of F̃.

By equations in (3.1), it is easy to verify that both F̃ and F̃ are invert-
ible, differentiable, and expanding maps. Now we consider the complete
metric space CP(lZ

d
, lZ

d
) (the subscript P indicates certain periodicity) con-

sisting of all continuous maps g(x̄) from lZ
d

to itself satisfying the condition
g(x̄+n̄)=g(x̄)+n̄:

CP(lZ
d
, lZ

d
)={g: lZ

d
Q lZ

d
, continuous, g(x̄+n̄)=g(x̄)+n̄, for n̄ ¥ Zd}.

(3.2)

The metric on this space is the supremum metric induced by the metric r

on lZ
d
:

r(g1, g2)=sup
x̄ ¥ lZd

r(g1(x̄), g2(x̄)).

Define a map LF on CP(lZ
d
, lZ

d
) by

LF g(x̄)=F̃−1
p g p F̃(x̄). (3.3)

To see that the map LF is well-defined we need to observe that LF g(x̄) is
continuous. The relation

LF g(x̄+n̄)=LF g(x̄)+n̄

follows directly from equations in (3.1).
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To obtain the conjugating map, we need to show that the map LF has
a fixed point near the identity map of the space lZ

d
: Id ¥ CP(lZ

d
, lZ

d
). For

any map g ¥ CP(lZ
d
, lZ

d
) with r(g, Id) < d (0 < d < 1).

r(Lg(x̄), Id(x̄))=r(F̃−1
p g p F̃(x̄), F̃−1

p Id p F̃(x̄))

[ lr(g, F̃ p F̃−1) [ l[r(g, Id)+r(Id, F̃ p F̃−1)] [ l(d+E),

where 0 < l < 1 denotes the Lipschitz constant for F̃−1. For any fixed
0 < d < 1, we can choose E in (C3) sufficiently small such that l(d+E) < d.
i.e., the map LF maps the d-neighborhood of the identity map Id in
CP(lZ

d
, lZ

d
) into itself. Since l < 1, LF is also contracting. Therefore, there

exists a unique fixed point h̃ in this d-neighborhood of Id. The map h̃
satisfies the equation F̃ p h̃=h̃ p F̃. In fact, we have

h̃= lim
n Q .

Ln
F(Id). (3.4)

To show that h̃ is a homeomorphism of the Banach space lZ
d
, we need

to apply the same argument to the map

g Q F̃−1
p g p F̃

to obtain its fixed point h̃Œ close to the identity. We note that h̃Œ p h̃ is close
to the identity and is the unique fixed point of the map

g Q F̃−1
p g p F̃.

Thus, it must be the identity map, i.e.,

h̃Œ p h̃=Id.

Similarly, we have

h̃ p h̃Œ=Id.

Thus, h̃ conjugates F̃ and F̃.
The projection of h̃ onto M is the conjugating map h between F

and F. L

Study of the metric properties (existence, uniqueness of invariant
measures) of lattice dynamical systems requires additional properties of the
conjugating map h. Since the phase space M is not compact under the
supremum metric r, it is not convenient for us to study invariant measures.
The natural topology under which invariant measures can be rather easily
studied is the product topology on M. The exponential decay condition
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(C4) guarantees that the conjugating map h will have the desired regularity
in the product topology to transport invariant measures of the unperturbed
system (M, F) onto the perturbed system (M, F).

Theorem 3

(1) If F satisfies conditions (C1), (C2), and (C4), then F is Lipschitz
continuous with respect to the metric rq for any q with e−b < q < 1.

(2) When E > 0 in (C3)–(C4) is sufficiently small, F̃−1 is also
Lipschitz continuous and contracting in the metric rq for any q with
e−b < q < 1.

Proof. (1) Let i ¥ Zd be fixed. Then,

q | i|d(Fi(x̄), Fi(ȳ)) [ C
j ¥ Z

d
q | i| >“Fi

“xj

> d(xj, yj)

[ q | i| >“Fi

“xi

> d(xi, yi)+ C
j ¥ Z

d, j ] i

q | i|EC3e−b | i − j|d(xj, yj)

[ 1 C
j ] i

EC3(qeb)−|i − j|+C2 sup
j ¥ Z

d
q | j |d(xj, yj),

where C is a constant.

(2) To prove the second part of the theorem, we need only to use
the following lemma whose slightly different versions appeared in refs. 15
and 26.

Lemma 1. Let F̃−1
i denote the coordinate of F̃−1 at i ¥ Zd, then for

any 0 < bŒ < b, there exists constant C(bŒ) such that

: “F̃−1
i

“xj

: [ C(bŒ) Ee−bŒ | i − j|

for i ] j, i, j ¥ Zd and

: “F̃−1
i

“xi

: [ l < 1,

where l is the Lipschitz constant of F̃−1 in the metric r.

We repeat the estimation in the proof of (1) for F̃−1 to obtain the
desired result. Note that the Lipschitz constant of F̃−1 in the rq metric is
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less then one when E > 0 in (C3) and (C4) is sufficiently small. We will also
denote this Lipschitz constant in the metric rq by l. L

The Hölder continuity of F and F̃−1 in the metric rq can be passed
onto the conjugating map h. The next theorem implies that h is indeed,
Hölder continuous in the metric rq. Moreover, it is close to a direct
product of maps on the unit circle.

Theorem 4. The conjugating map h satisfies the following properties.
(1) There exist constants 0 < d < 1 and C > 0 such that

d(hi(x̄), hi(ȳ)) [ Cdd(xi, yi) (3.5)

for any x̄=(xk), ȳ=(yk) ¥ M with xk=yk for all k ¥ Zd except k=i.
(2) For any 0 < bŒ < b, there exists constant c(E), depending only on

E and c(E) Q 0 as E Q 0, such that for any fixed i, j ¥ Zd, i ] j and any
x̄, ȳ ¥ M with xk=yk for all k ¥ Zd except k=j,

d(hi(x̄), hi(ȳ)) [ c(E) e−bŒ

2 | i − j|dd(xj, yj), (3.6)

The proof of the first property relies on the finite dimensional approx-
imation while the second part of the theorem, inequality (3.6) is proved by
induction. For simplicity, we choose V={i ¥ Zd, | i| [ n}. The following
lemma can be directly verified using the definitions.

Lemma 2. For any volumes V ı VŒ ı Zd,

(1) FV(xV)=FVŒ(xV, xg
VŒ0V).

(2) rq(FV, FVŒ) [ Cqn

In particular, rq(FV, F) [ Cqn, where C is a constant.

Proof of (1) of Theorem 4. First, we observe that the Lipschitz
continuity in the metric rq holds for the lifted map F̃ provided that it is
considered in a bounded set in the metric r.

Next, we consider the extended maps of FV defined on the entire M

using the formula (2.1). Similarly, we extend the lifted maps and we will use
the same notations for these extended maps. Since the map FV satisfies
conditions (C1)–(C4) with the same set of constants, Theorem 3 holds
when F is replaced by FV.

For n=1, 2,..., we have a sequence of maps LFV
defined on the same

metric space CP(lZ
d
, lZ

d
):

LFV
g=F̃−1

V p g p F.
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Estimating the induced distance between LFV
and LF , we have

rq(LFV
g, LF g)=rq(F̃−1

V gF̃, F̃−1gF̃)

=rq(F̃−1
V gF̃, F̃−1

V F̃VF̃−1gF̃)

[ lrq(F̃F̃−1gF̃, F̃VF̃−1gF̃) [ lCqn.

Note that all maps LFV
have the same contracting coefficient l. By the

uniform contracting map theorem, the unique fixed points hV satisfy the
inequality

rq(hV, h) [ CŒqn,

where the constant CŒ depends only on l and C. We conclude that hV con-
verges to h exponentially fast in the metric rq.

To prove the first statement in Theorem 4, we just need to show the
inequality holds when i=0 because of the translation invariance. This is
achieved by applying the convergence of hV to h to the following lemma.

Lemma 3. There exist constants C > 0, d > 0 independent of the
volume V, such that

rq(hV(xV), hV(yV)) [ Crd
q(xV, yV),

for all xV=(xk), yV=(yk) ¥ MV with xk=yk, k ¥ V, k ] 0.

Proof of the Lemma. We follow the proof of a similar result for
hyperbolic systems on p. 599 in ref. 22. We just need to make sure that the
constants involved are independent of the volume V.

Since h̃ is the lift of h and M is compact in the metric rq, both maps h̃
and h are uniformly continuous with respect to the metric rq. Because the
convergence hV Q h is uniform, we have that for any given E0 > 0, there
exists d0 > 0 independent of the volume V such that rq(hV(xV), hV(yV)) < E0

whenever rq(xV, yV) < d0. The same is true for the lifted map h̃V in a
bounded (in the metric r) set.

Let l < 1 and L > 1 be the Lipschitz constants for F̃−1
V and F̃V (or, f)

in the metric rq. Both constants are independent of V. Choose 0 < d < 1
such that lLd < 1. Let xV, yV ¥ MV with xk=yk, k ¥ V, k ] 0. Note that
rq(xV, yV)=d(x0, y0). We may assume that rq(xV, yV) < d0. Let m \ 0 be
an integer such that

Lmrq(xV, yV) < d0 [ Lm+1rq(xV, yV).
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Since rq(F̃m
V (xV), F̃m

V (yV))) [ Lmrq(xV, yV) < d0, we have

rq(hV(xV), hV(yV))=rq(h̃V(xV), h̃V(yV))

=rq(F̃−m
V h̃VF̃m

V (xV), F̃−m
V h̃VF̃m

V (yV))

[ lmE0=
E0

dd
0

lmdd
0 [

E0

dd
0

lmL (m+1) drd
q(xV, yV)

[
E0

dd
0

Ldrd
q(xV, yV). L

We continue to prove the second part of the theorem.

Proof of the Smallness in the Hölder Coefficients. In the proof
of structural stability, we have shown that h̃, the lift of h can be obtained as
a limit: h̃=limn Q . Ln

F(Id) in the metric induced by r. We now use induc-
tion on n. Obviously, the identity Id satisfies the estimation (3.6). Let us
assume that g(x̄)=Ln

F(Id) satisfies these inequalities, i.e.,

d(gi(x̄), gi(ȳ)) [ c(E) e−bŒ

2 | i − j| dd(xj, yj).

We show that LF g(x̄)=F̃−1
p g p F̃(x̄) satisfies the same estimations when

E is sufficiently small. We need estimations of the entries of the derivative
matrix DF̃−1 from Lemma 1:

: “F̃−1
i

“xi

: [ l < 1 and : “F̃−1
i

“xk

: [ C(bŒ) Ee−bŒ | i − k|

for some constant bŒ < b. Let L denote the Lipschitz constant of map f.
Notice that x̄ and ȳ differ only at the lattice site j. We have

d(F̃−1
i p g p F̃(x̄), F̃−1

i p g p F̃(ȳ))

[ C
k ¥ Z

d

>“F̃−1
i

“xk

> d(gk p F̃(x̄), gk p F̃(ȳ))

=>“F̃−1
i

“xj

> d(gj p F̃(x̄), gj p F̃(ȳ))+>“F̃−1
i

“xi

> d(gi p F̃(x̄), gi p F̃(ȳ))

+ C
k ] i, j

>“F̃−1
i

“xk

> d(gk p F̃(x̄), gk p F̃(ȳ))

[ 1C(bŒ) ECe−bŒ |i−j|+1l+ C
k ] i, j

C(bŒ) Ee−bŒ |i−k|2 c(E) e−bŒ

2 |i−j|2 dd(f(xj), f(yj))

[ 1C(bŒ) ECe−bŒ |i−j|Ld+1lLd+ C
k ] i, j

C(bŒ) Ee−bŒ |i−k|Ld2 c(E) e−bŒ

2 |i−j|2 dd(xj, yj).
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We first choose d such that lLd < 1 (this is exactly how d is chosen in
Lemma 3 in the first place). We then need E > 0 to be sufficiently small so
that

C(bŒ) ECe−bŒ

2 | i − j|Ld+lc(E) Ld+ C
k ] i, j

C(bŒ) Ee−bŒ | i − k|c(E) Ld [ c(E).

In fact, we can simply let c(E)=`E. L

As a consequence of Theorem 4, we have the Hölder continuity of h.

Corollary 1. There exist constants 0 < d < 1 and C > 0 such that

rq(h(x̄), h(ȳ)) [ Crd
q(x̄, ȳ)

for all x̄, ȳ ¥ M.

4. THERMODYNAMIC FORMALISM

In this section, we discuss how to obtain equilibrium states for suitable
potentials on the lattice dynamical system (F, M) with respect to the Zd+1

+

action using the Gibbs states on its symbolic representation (a lattice spin
system). The exposition is similar to that in refs. 15 and 20. So some details
are omitted.

4.1. Markov Partition and Semi-Conjugacy

The symbolic representation of the lattice system (F, M) is induced by
the symbolic representation of the local map f through the conjugating
map h.

Since f is an expanding map with degree p, we have a Markov parti-
tion and a semi-conjugacy p between f and the left shift st on Sp, the (one
direction) full shift of p symbols:

f p p=p p st.

This semi-conjugacy is extended to a semi-conjugacy p̄=ê i ¥ Z
d p between

F and ê i ¥ Z
d (st)i on SZ

d

p =ê i ¥ Z
d (Sp)i, where (Sp)i are copies of Sp.

This shift ê i ¥ Z
d(st)i will again be denoted by st for simplicity. Elements of

SZ
d

p will be denoted by t̄=t̄(i, j)i ¥ Z
d, j ¥ Z

+, or t̄=ti(j)i ¥ Z
d, j ¥ Z

+. For each
fixed i ¥ Zd, ti ¥ Sp. This symbolic space is endowed with the distance

rq(t̄, ḡ)= sup
(i, j) ¥ Z

d+1
+

q | i|+|j |d(t̄(i, j), ḡ(i, j)),
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where Zd+1
+ ={(i, j) : i ¥ Zd, j ¥ Z+} and d is the discrete metric on the set

of p symbols. The corresponding metric on M is the metric rq. It is easy to
verify that the map p̄ is Hölder continuous under the metrics rq.

Since we have proved that the conjugating map h is Hölder continuous
in the metric rq, we have the semi-conjugacy h p p̄ between F and st. When
F is a spatial translation invariant perturbation, the conjugating map h is
also translation invariant, i.e., ss p h=h p ss. Thus, the map h p p̄ is also a
semi-conjugacy between the spatial translation ss on M and the spatial
translation ss on SZ

d

p . Therefore, h p p̄ is a semi-conjugacy between the
Zd+1

+ group actions generated by (F, ss) and (st, ss).
For finite dimensional approximation maps FV, we use the same

method to construct symbolic representations through the conjugation
map hV.

The semi-conjugacy acts as a bridge between measures on M and SZ
d

p .
For a Borel measures m on M, it has a corresponding measure n on SZ

d

p

satisfying the equation

n((h p p̄)−1 (E))=m(E), E ı M. (4.1)

On the other hand, every measure on the symbolic space SZ
d

p can be
pushed forward to define a measure on M.

4.2. Equilibrium States

We first define equilibrium states for lattice dynamical systems. The
description below is adapted from ref. 29.

Let W be a compact metric space and y be a Zd+1
+ -action on W induced

by d( \ 0) commuting homeomorphisms and one continuous map. Let also
U={Ui}i ¥ I be a cover of W: 1i ¥ I Ui=W. For a finite set L … Zd+1

+ define

UL= I
k ¥ L

y−kU

to be the refined cover of W consisting of all sets of the form

B= 3
k ¥ L

y−kUi(k), i(k) ¥ I.

Denote by |L| the cardinality of the set L.
An action y is said to be expansive if there exists E > 0 such that for

any t, g ¥ W,

d(ykt, ykg) [ E for all k ¥ Zd+1
+ implies t=g.
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A Borel measure m on W is said to be y-invariant if m is invariant with respect
to all d homeomorphisms and one continuous map. We denote the set of all
y-invariant probability measures on W by C(W).

Let m ¥ C(W) and U={Ui} be a finite Borel partition of W. Define

H(m, U)=−C
i

m(Ui) log m(Ui).

and set

hy(m, U)= lim
a1,..., ad+1 Q .

1
|L(a)|

H(m, UL(a))=inf
a

1
|L(a)|

H(m, UL(a)),

where L(a)={(i1...id+1) ¥ Zd+1
+ : a=(a1...ad+1), an > 0, |in | [ an, n=1,...,

d+1}. The measure-theoretic entropy of the action y with respect to m is
defined to be

hm(y)=sup
U

hy(m, U)= lim
diam UQ 0

hy(m, U), (4.2)

where diam U=maxi (diam Ui).
Let U be a finite open cover of W, j a continuous function on W, and

L a finite subset of Zd+1
+ . Define the partition function over L to be

ZL(j, U)=min
{Bj}

3C
j

exp 5 inf
t ¥ Bj

C
k ¥ L

j(ykt)64 , (4.3)

where the minimum is taken over all subcovers {Bj} of UL. Set

Py(j, U)= lim sup
a1,..., ad+1 Q .

1
|L(a)|

log ZX(a)(j, U).

The quantity

Py(j)= lim
diam UQ 0

Py(j, U)=sup
U

Py(j, U) (4.4)

is called the topological pressure of j. One can show that the limit in
expressions (4.2) and (4.4) exists. Details of proofs can be found in ref. 29.

Let j(x) be any continuous function on W and Py(j) be its topological
pressure with respect to y. Then, we have the variational principle

Py(j)=sup
c ¥ C

1hc(y)+F j dc2,
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where hc(y) is the measure theoretical entropy of the Zd+1
+ -action y with

respect to c. A y-invariant measure m is called an equilibrium state for j if
the supremum is attained at m.

Equilibrium states exist for continuous functions as long as the
Zd+1

+ -action is expansive. (29) One can easily rarify that the Zd+1
+ -action on

M generated by F and the translations is expansive in the metric rq.
The ergodic properties of an equilibrium states are related to its

uniqueness. In fact, uniqueness implies ergodicity. (27) The stronger ergodic
properties, such as mixing and exponential decay of correlation functions
can be obtained by considering symbolic representations of dynamical
systems and some other techniques such as the transfer operator method
and the zeta-function method.

4.3. Invariant Gibbs States for Symbolic Spaces

From the symbolic representations of F and FV, we have the following
symbolic spaces (lattice spin systems):

SZ
d

p =ë
i ¥ Z

d
(Sp)i, SV

p =: ë
i ¥ V

(Sp)i. (4.5)

Under the metric rq, 0 < q < 1, SZ
d

p and SV
p are compact metric spaces and

the variational principle holds in these cases. For spaces SV
p , we have a

Z+-action induced by the left shift st of Sp. On SZ
d

p , we have a Zd+1
+ -action

induced by the (space) translations ss on Zd and (the time shift) st on Sp.
Clearly, both actions are expansive in the metric rq.

On these symbolic spaces, equilibrium states for any Hölder continu-
ous function are equivalent to invariant Gibbs states (defined below; also
see chapter one and three of ref. 29). Even though the equivalence theorem
there was proved for Zd-actions, the proofs are valid for Zd+1

+ -actions).
Any element t̄ ¥ SZ

d

p will also be called a configuration. For any subset
L … Zd+1

+ , set

WL={1, 2,..., p}L.

For convenience, elements of WL are also denoted by tL, or t(L). One can
say that WL consists of restrictions of configurations t̄ to L.

For each finite subset L … Zd+1
+ , define a function pL(t̄) on SZ

d

A by

pL(t̄)=
1

; ḡ : g(L̂)=t(L̂) exp(;k ¥ Z
d+1
+

j(ykḡ) − j(ykt̄))
, (4.6)
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where yk denotes the action s i
s p s j

t , L̂=Zd+1
+ 0L and k=(i, j), i ¥ Zd,

j ¥ Z+.
Let j be a Hölder continuous function on SZ

d

p . A probability measure
m on SZ

d

p is called a Gibbs state for j if for any finite subset L … Zd+1
+ ,

mL(t(L))=F
WL̂

pL(t̄) dm L̂ , (4.7)

where mL and m L̂ are projections of m onto WL and WL̂, respectively.
Equation (4.7) is known as the Dobrushin-Ruelle-Lanford equation.

There are other equivalent ways to define Gibbs states for Hölder
continuous functions on symbolic spaces. Let j be such a function. For
each finite volume L, we first define a conditional Gibbs distribution on WL

under a given boundary condition gg by

mg
g, L(t(l))=

1

;g, g(L̂)=g
g(L̂) exp(;k ¥ Z

d+1 j(ykg) − j(yk(t(L)+gg(L̂)))
,

(4.8)

where t(L)+gg(L̂) denotes the configuration on L 2 L̂ whose restrictions
to L and L̂ are t(L) and gg(L̂) respectively. Then the set of all Gibbs states
for j is the convex hull of thermodynamic limits of the conditional Gibbs
distributions. (29)

In order to establish the correspondence between equilibrium states of
lattice dynamical systems and the invariant Gibbs states of lattice spin
systems, we will need ergodic properties of Gibbs states that is related to
the uniqueness of Gibbs states. The uniqueness of Gibbs states for various
potential functions have been major research topics in equilibrium statisti-
cal mechanics during last three decades. It is well-known that Gibbs states
are always unique for any Hölder continuous functions on one dimensional
lattice spin systems (so called absence of phase transition). In higher
dimensional cases, the uniqueness holds for those Hölder functions with a
small Hölder constant which corresponds to the situation of ‘‘high tem-
perature.’’ For general Hölder continuous functions, the uniqueness is not
true. The Ising model provides a simple example. (20)

The potential function that will appear in our consideration of SRB-
measures for lattice dynamical systems in the next section does not have a
small Hölder constant. However, the potential function is only a small
perturbation from a potential function for which the uniqueness holds.
Using a direct cluster expansion technique one can show that the same
properties hold for the slightly perturbed potential functions. We state the
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theorem below. The theorem was proved in ref. 19 for the dimension two
case (d=1) for a class of subshifts of finite type. The proof provides a
formula for the Gibbs state in terms of the potential. For general higher
dimensional cases, it was proved in refs. 7 and 8. The latter shows directly
the uniqueness without obtaining an explicit expression of the Gibbs state
(see ref. 7).

Theorem 5 (Uniqueness and Exponential Mixing Property of

Gibbs States). Let j be a Hölder continuous function on SZ
d

p . Assume
that j can be written in the form j=j0+j1, where j0 is a Hölder con-
tinuous function satisfying the condition j0(t̄)=j0(ḡ) for all t̄, ḡ ¥ SZ

d

p with
t(0, j)=g(0, j), 0 ¥ Zd, j ¥ Z+ and j1 satisfies the condition |j1(t̄) − j1(ḡ)|
[ crd

q(t̄, ḡ) with the Hölder coefficient c sufficiently small. Then, the Gibbs
state for j=j0+j1 is unique and exponentially mixing with respect to the
Zd+1

+ -action.

4.4. Semi-Conjugacy

Now we are ready to construct equilibrium states on lattice dynamical
systems that correspond to invariant Gibbs states on their symbolic repre-
sentations. First we prove the following lemma on the transition of poten-
tial functions. Note that invariant Gibbs states and equilibrium states are
the same on our symbolic space SZ

d

p (ref. 29, p. 60).

Lemma 4. Let j0 and j1 be Hölder continuous function on M

satisfying the condition j0(x̄)=j0(ȳ) whenever x0=y0. Then, for every
d > 0 and 0 < q < 1, there exist sufficiently small cŒ > 0 and E > 0 such
that when |j1(x̄) − j1(ȳ)| [ cŒrd

q(x̄, ȳ), the composition of functions
(j0+j1)(h p p̄) satisfies the condition of Theorem 5 for suitably chosen
constants. Consequently, the invariant Gibbs state (or the equilibrium
state) on SZ

d

p for (j0+j1)(h p p̄) is unique and exponentially mixing with
respect to the Zd+1

+ -action.

Proof. We need to show that (j0+j1)(h p p̄(t̄)) satisfies the condi-
tion of Theorem 5. It suffices to show that j0(h p p̄) can be written into the
form j0(h p p̄)=k0(t̄)+k1(t̄) with k0 and k1 satisfying the conditions of
Theorem 5.

Pick any fixed configuration t̄g ¥ SZ
d

p . Denote by (t0, t̄g) the configu-
ration whose restriction to the lattice site 0 ¥ Zd is the same as that of t̄ and
whose values elsewhere are the same as those of t̄g. Define

k0(t̄)=j0(h p p̄(t0, t̄g));
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and

k1(t̄)=j0(h p p̄(t̄)) − j0(h p p̄(t0, t̄g)).

Notice that the value of k0 depends only on t0. Therefore, we need only to
verify that k1 is Hölder continuous with some exponent and a coefficient
that can be made arbitrary small as cŒ and E are small.

Let us pick two configurations t̄, ḡ ¥ SZ
d

p . It suffices to prove the
following inequality

|k1(t̄) − k1(ḡ)| [ c0(E) qŒ
| i|+|j |

for some constant 0 < qŒ < 1 and all t̄, ḡ with tk(l)=gk(l) for every
(k, l) ¥ Zd+1

+ except at the site (i, j).
Let n0 be a large integer. If | i|+|j | [ n0, we have

|k1(t̄) − k1(ḡ)|

[ |j0(h p p̄(t̄)) − j0(h p p̄(t0, t̄g))|+|j0(h p p̄(ḡ)) − j0(h p p̄(g0, t̄g))|

[ L1ra1
q (h p p̄(t̄), h p p̄(t0, t̄g))+L1ra1

q (h p p̄(g), h p p̄(g0, t̄g))

[ L1ca1(E) La1a2
2 +L1ca1(E) La1a2

2

[
2L1ca1(E) La1a2

2

qno
q | i|+|j |,

where L1, a1 are the Hölder coefficient and exponent of j0, L2, a2 are the
Hölder coefficient and exponent of p̄, and c(E) is the constant from
Theorem 4.

If | i|+|j | > n0, we have

|k1(t̄) − k1(ḡ)| [ |j0(h p p̄(ḡ)) − j0(h p p̄(t̄))|

+|j0(h p p̄(g0, t̄g)) − j0(h p p̄(t0, t̄g))|

[ 2L1Ca1La1a2
2 qa1a2(| i|+|j |) [ 2L1Ca1La1a2

2
1qa1a2

qŒ

2n0

qŒ
| i|+|j |.

Let

c0(E)=max 32L1ca1(E) La1a2
2

qno
, 2L1Ca1La1a2

2
1qa1a2

qŒ

2n0 4 .

It can be made arbitrarily small when we choose qŒ such that qa1a2 < qŒ < 1
and E small. L
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The following theorem summarizes the connections between equilib-
rium states of lattice dynamical systems (F, ss) on M and the invariant
Gibbs states on their symbolic representations.

Theorem 6. For any Hölder continuous function j0(x̄) on M that
depends only on the coordinate x0, there exist E0 > 0, c0 > 0 such that when
E [ E0 and j1 is a Hölder continuous function with a Hölder coefficient
smaller than c0, the follow statements hold.

(1) The invariant Gibbs state n for the function (j0+j1)(h p p̄) on
SZ

d

p is unique and exponentially mixing with respect to the Zd+1
+ -action

(st, ss).

(2) The measure m on M defined by m(E)=n((hp)−1(E)) is invariant
under the Zd+1

+ -action generated by (F, ss) and is the unique equilibrium
state satisfying the variational principle

Py(j0+j1)=hm(y)+F (j0+j1) dm.

Moreover, the measure m is exponentially mixing with respect to the
Zd+1

+ -action generated by (F, ss).

Remark 3. The role of E0 is to control the conjugating map h so that
the composition (j0+j1)(h p p̄) satisfies the condition of Theorem 5. The
proof of the statement (1) follows directly from the lemma. To prove the
statement (2), we need to use the Hölder continuity of h, the ergodicity of
the Gibbs state which is guaranteed by its uniqueness, and the fact that h is
‘‘almost’’ a homeomorphism. The proof follows the standard technique in
ref. 3. Details were presented in ref. 15.

5. SRB-MEASURES FOR LATTICE DYNAMICAL SYSTEMS

We now focus on the SRB-measure for lattice dynamical systems. The
existence, uniqueness, and exponential mixing property of SRB measures
for coupled map lattices were proved in ref. 7 with the transfer operator
technique under essentially the same conditions. Here, we prove that this
measure is an equilibrium state satisfying the variational principle with
respect to the Zd+1

+ -action generated by (F, ss). Recent progress concerning
the uniqueness and limit theorems of the SRB measure and properties of
transfer operators can be found in refs. 2, 10, 18, 24, and 30.
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The construction of SRB-measures for lattice systems is based on the
finite dimensional approximation. We will show that the SRB-measures mV

on the finite dimensional space MV=ê i ¥ V Mi converges to a measure m

on M in the sense of thermodynamic limit. We observe that measures mV

are not supported on the same space. For V … VŒ … Zd, the projection of
mVŒ onto MV is a probability measure. The convergence is understood in
the following sense: for every V … Zd, the projection of mVŒ on MV weakg

converges to the projection of m onto MV as VŒ Q Zd. We will show that
this measure m is a unique equilibrium state under Zd+1

+ -action for a Hölder
continuous function j satisfying the condition of Theorem 6. This Hölder
continuous potential function is a small perturbation of − log |fŒ(x0)|.
Thus, m is exponentially mixing with respect to (F, ss). The approach of
the proof is to consider corresponding Gibbs states on lattice spin systems.

5.1. Limit of SRB-Measures

We consider the thermodynamic limit of the sequence of SRB mea-
sures mV for expanding maps FV on MV as V Q Zd. We require that the
perturbation F satisfies additional condition (C5), which is never used in
the previous sections.

We first state the main theorem and the strategy of the proof. Denote
nV=(hVp̄)−1 mV the pull back measure on the symbolic space êi ¥ V Sp. This
measure is the unique Gibbs state for the potential function − log JFV(hVp̄)
with respect to the Z+-action st.

Theorem 7. Under the conditions (C1)–(C5) for sufficiently small
E > 0 and the assumption that the perturbation is spatial translation
invariant,

(1) the measure nV converges to a measure n on SZ
d

p . The measure n is
invariant under the Zd+1

+ -action generated by (st, ss) and it is the unique
and exponentially mixing Gibbs state for some potential function j(hV p p̄)
close to − log |fŒ(x0)|;

(2) the push-forward measure m=(h p p̄)gn is the unique equilibrium
state for the potential function j(x̄). The measure m is exponentially mixing
with respect to the Zd+1

+ -action y generated by (F, S). Moreover, the
entropy formula holds:

hm(y)=F j dm.

The proof of the theorem consists of a careful decomposition (or
localization) of the potential function − log JFV(hVp̄). The technique was
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used in ref. 7 and later presented in full detail in ref. 20 for coupled hyper-
bolic maps. Since our local map f is an expanding map on the circle, the
calculation becomes more transparent and a lot of technical difficulties
related to the regularity of stable and unstable manifolds can be avoided.
In fact, in certain cases (nearest-neighbor interaction), the expression of the
potential function j can be explicitly calculated in terms of coupling
strength and other parameters.

5.2. The Decomposition of −log JFV and the Construction of the

Potential Function j

We shall arrange the elements of V … Zd in certain linear order and
denote the total number of elements in V by |V|.

We rewrite the derivative matrix DFV in the following

DFV=1“Fi

“xj

2
i, j ¥ V

=(diag(fŒ(xi))(I+AV(xV)),

where (diag(fŒ(xi)) denotes the diagonal matrix with {fŒ(xi)} on the main
diagonal.

Under conditions (C1)–(C5), the entries of the matrix AV(xV), aij(xV),
i, j ¥ V have the following properties.

Lemma 5

(1) |aij(xV))| [ EC3e−b | i − j|.

(2) |aij(xV)−aij(yV)| [ EC4e−b | i −k|da(xk, yk) for any xV, yV with xl=yl,
l ¥ V, l ] k.

(3) For any V … VŒ, i, j ¥ V, aij(xV)=aij(xV, xg
VŒ0V).

(4) |aij(xV) − aij(yVŒ)| [ EC5e−b

2 d(i, “V),

where C5 is a constant, V … VŒ … Zd, xl=yl, l ¥ V, and d(i, “V) denotes the
distance between i and the boundary of V in Zd.

Proof. All these properties are direct consequences of our definition
of the perturbation. (1) comes from condition (C4) and (2) comes from
condition (C5). (3) is from the definition of FV while (4) is a consequence
of (2) and (3). L

Next, we use the following formula to expand of a determinant of a
matrix B

det(exp(B))=exp(trace(B)).
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In our context, exp(B)=I+AV(xV), or B=ln(I+AV). Then,

det(I+AV)=exp(trace(ln(I+AV))=exp 1− C
i ¥ V

wVi
2 ,

where

wVi(xV)= C
.

n=1

(−1)n

n
a (n)

ii (xV) (5.1)

and a (n)
ii (xV) are entries on the main diagonal of (AV)n. Thus, we have

JFV=exp 1 − C
i ¥ V

(−log |fŒ(xi)|+wVi)2 (5.2)

Lemma 6. The functions wVi(xV) satisfy the following properties.

(1) |wVi(xV)| [ CE.

(2) |wVi(xV) − wVi(yV)| [ CE exp(− b
2 | i − k|) dd(xk, yk), for any xV, yV

with xl=yl, l ¥ V, l ] k.

(3) For V … VŒ, |wVi(xV) − wVŒi(xV, yVŒ0V)| [ CE exp(− b
2 d(i, “V)).

(4) ji(x̄)=limV Q Z
d wVi(xV) exists and is translation invariant in the

following sense: ji(x̄)=j0(s i
sx̄).

Proof. The proof consists of straightforward computations. We first
show the following estimation

|a (n)
ij | [ (CE)n e−b̃ | i − j|, (5.3)

where b̃ is any number smaller than b and C=C(b̃) is a constant.
We use induction. For n=2, we have

|a (2)
ij |=: C

l ¥ V
ailalj

: [ C
l ¥ V

E2C2
3 exp(−b(| i − l|+|l − j|))

[ C
l ¥ V

E2C2
3 exp(−b̃(| i − l|+|l − j|) − (b − b̃) |l − j|)

[ E2C2
3e−b̃ | i − j| C

l ¥ V
exp(−(b − b̃) |l − j|) [ C3CE2e−b̃ | i − j|,

[ C2E2e−b̃ | i − j|, (5.4)

where C=C(b̃)=;l ¥ Z
d exp(−(b − b̃) |l|) C3.
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Let us assume that |a (n − 1)
ij | [ Cn − 1En − 1 exp(−b̃ | i − j|). Then

|a (n)
ij |=: C

l ¥ V
a (n − 1)

il alj
: [ C

l ¥ V
Cn − 1EnC3 exp(−b̃(| i − l|+|l − j|) − (b − b̃) |l − j|)

[ CnEn exp(−b̃ | i − j|). (5.5)

Therefore (1) follows directly from the definition of wVi with another
different constant C.

To prove (2), we need only to show the following estimation:

|a (n)
ij (xV) − a (n)

ij (yV)| [ (CE)n e−b

2 | i − k|da(xk, yk),

for any xV, yV with xl=yl, l ¥ V, l ] k. We again use induction. For n=2,

|a(2)
ij (xV)−a(2)

ij (yV)|

=: C
l ¥ V

ail(xV) alj(xV)−ail(yV) alj(yV) :

=: C
l ¥ V

ail(xV)[alj(xV)−alj(yV)]+alj(yV)[ail(xV)−ail(yV)] :

[ C
l ¥ V

E2C3C4[exp(−b(|l−k|+|i−l|))+exp(−b(|l−j|+|i−k|))] da(xk, yk)

[ CE2 exp 1−
b

2
|i−k|2 da(xk, yk),

where C=2C3C4 ;l ¥ Z
d exp(− b

2 |l|).
For general n, we estimate similarly using the estimations Lemma 5 (1)

and (2).

|a (n)
ij (xV) − a (n)

ij (yV)|

=: C
l ¥ V

a (n − 1)
il (xV) alj(xV) − a (n − 1)

il (yV) alj(yV) :

=: C
l ¥ V

a (n − 1)
il (xV)[alj(xV) − alj(yV)]+alj(yV)[a(n − 1)

il (xV) − a (n − 1)
il (yV)] :

[ C
l ¥ V

(CE)n − 1 EC3C4
5exp 1−

b

2
|i − l| − b |l − k|2

+exp 1−b |l − j| −
b

2
|i − k|26 da(xk, yk)

[ (CE)n exp 1−
b

2
|i − k|2 da(xk, yk).

Sinai-Ruelle-Bowen Measures for Lattice Dynamical Systems 891



Statement (3) is proved similarly by using the corresponding property
(4) in Lemma 5 for the matrix AV. Property (4) comes from (3) and our
assumption that map F is spatial translation invariant. Note that the
convergence is uniform in x̄. L

We set k(x̄)=j0(x̄). A straightforward calculation shows that Lemma 6
(2) implies that k(x̄) is a Hölder continuous function with a small Hölder
constant. In fact, the Hölder constant goes to zero as E goes to zero. Thus,
by Theorem 6 the equilibrium state for j=k(x̄) − log |fŒ(x0)| with respect
to the Zd+1

+ -action generated by (F, ss) is unique and exponentially mixing.

Theorem 8. The Gibbs states nV for potentials jV(tV)=
−log JFV(hVpV(tV)) on the one dimensional lattice spin systems SV

p con-
verge to a Gibbs state on the (d+1)-dimensional lattice spin system SZ

d

p .
This Gibbs state is uniquely determined by the Hölder continuous potential
function j(hp̄(t̄))=k(hp̄(t̄)) − log |fŒ((hp̄(t̄))0)| and is exponentially
mixing respect to the Zd+1

+ -action of the lattice.

Theorem 9. The SRB measure mV for FV converges to an equilib-
rium measure on the spaceM as V Q Zd. This equilibrium measure is uniquely
determined by a Hölder continuous potential function k(x̄) − log |fŒ(x0)|
defined on M and the measure is exponentially mixing with respect to both
spatial translations and F. The function k(x̄) is given by the formula

k(x̄)= C
.

n=1

(−1)n

n
a (n)

00 (x̄),

where a (n)
00 (x̄) is the entry of the infinite matrix An corresponding to the

(0, 0) lattice point of Zd × Zd and the matrix A(x̄) is defined by the relation

1“Fi

“xj
(x̄)2

i, j ¥ Z
d
=(diag(fŒ(xi)))(I+A(x̄)).

Remark 4. We give a sketch of the idea with which the potential
function j(hp̄(t̄))=k(hp̄(t̄)) − log fŒ((hp̄(t̄))0) is obtained. We need to
decompose the Hamiltonian of the Gibbs state nV with respect to the time
shift st

C
j ¥ Z

+
− log JFV(hVpV(s j

ttV))
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to obtain the Hamiltonian for the Gibbs state n with respect to the
Zd

+-action (s i
s p s j

t). Using the expression (5.2), we have

C
j ¥ Z

+
− log JFV(hVpV(sj

ttV)) C
j ¥ Z

+
C

i ¥ V
− log |fŒ(hVpV(si

ss
j
ttV))|+wVi(hVpV(sj

ttV))

Q C
j ¥ Z

+, i ¥ Z
d

[ − log |fŒ(xi)|+j0](hp(s i
ss

j
t t̄)).

The actual proof uses the equivalent description of Gibbs states with
conditional Gibbs distributions (4.8). Details were presented in ref. 20.

Theorem 9 follows from Theorem 8 by using the semi-conjugacy.

Remark 5. The entropy formula in Theorem 7 and the decomposi-
tion of the potential function − log JFV for the SRB measure of FV have
an interesting consequence on the relation between the entropy hm(y) of the
lattice system and the entropy hmV

(FV). Since mV Q m weakly and wVi(xV)
converges to ji(x̄) uniformly by Lemma 6, we have

hm(y)=F
M

j dm= lim
V Q Z

d

1
|V|

F
M

− log JFV dmV= lim
V Q Z

d

1
|V|

hmV
(FV).

6. THE POTENTIAL FUNCTION AND THE ENTROPY OF COUPLED

MAP LATTICE

In this section, we go one step further to determine explicit formulas of
potential functions for coupled expanding maps (CMLs) on the circle. As a
consequence, we obtain the formula of the (spatiotemporal) entropy of the
coupled map lattice when the interaction is of nearest neighbor type.

6.1. The Potential Function j

To obtain the potential function for the SRB measure of coupled map
lattices, we first calculate the Jacobian matrix of the map F=G p F:

DF(x̄)=DG(F(x̄)) DF(x̄).

Notice that both DG=(“Gi
“xj

(F(x̄))) and DF=(fŒ(xi)) are infinite matrices
indexed by (i, j), i, j ¥ Zd and translation invariant since we assume that G
is translation invariant. We write DG in the following form:

DG=1“Gi

“xi
F(x̄)2 (I+A),
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where (“Gi
“xi

(F(x̄)) denotes the diagonal matrix with “Gi
“xi

(F(x̄)) on the main
diagonal. Thus, for i ] j, aij, the entries off diagonal of A are given by the
formula

aij=
“Gi

“xj
(F(x̄))/

“Gi

“xi
(F(x̄))

and aii=0.
By the expansion (5.2) and Remark 4, we see that the potential func-

tion for the SRB-measure with respect to the Zd+1
+ -action on M induced by

the map F and d translations is

j(x̄)=−log |fŒ(x0)| − log : “G0

“x0
(F(x̄)) :+kg(F(x̄)), (6.1)

where

kg(F(x̄))= C
.

n=1

(−1)n

n
a (n)

00 (F(x̄)) (6.2)

and a (n)
00 (F(x̄)) is the entry at the lattice site 0 × 0 ¥ Zd × Zd of the infinite

matrix An=AA · · · A. The term − log “G0
“x0

(F(x̄)) is isolated out from the
term k(x̄) in Theorem 9 in the potential function corresponding to the
perturbation. It is for the convenience of later calculation.

6.2. Potential Functions for CMLs with Nearest Neighbor

Interactions

The infinite size of the matrix A poses a special difficulty for further
calculation of the potential function in terms of the coupled map. In the
simple situation of the nearest neighbor interaction, however, the calcula-
tion can be directly carried out using a standard technique in statistical
physics.

6.2.1. The Lattice Z1 Case

We first assume that d=1 and the perturbation map G has the
following form:

G=(Gi): Gi(x̄)=g(xi − 1, xi, xi+1)

for some differentiable function g(x, y, z).
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The infinite matrix A formulated in the previous section can be
expressed as a sum of two matrices: A=L+R, where L=(lij) is an infinite
matrix with the property

lij=0, j ] i − 1, lii − 1=
“Gi

“xi − 1

;“Gi

“xi
,

i.e., the weighted leftward shift operator,and R=(rij) is an infinite matrix
with the property

rij=0, j ] i+1, rii+1=
“Gi

“xi+1

;“Gi

“xi
,

i.e., the weighted rightward shift operator.
For convenience, we denote ai=lii − 1 and bi=ri − 1i. Note that the

product matrix LR is a diagonal matrix with the entry at (i, i) being aibi.
We denote this diagonal matrix by T. We will determine the function kg in
terms of ai and bi’s. Let P denote the collection of all sequences of two
symbols L and R of length n=2k with equal numbers of L’s and R’s, i.e.,

P={p=(C1C2 · · ·C2k) : Cl=L or R, 0 [ l [ 2k and the number of LŒs is k}.

Proposition 2

a (n)
00 =˛0 if n is odd,

C
p ¥ P

am1
bm1

am2
bm2

· · · amk
bmk

if n=2k,

where the sequence of integers (m1, m2,..., mk) is determined by each p.

Proof. We first introduce a linear operator on infinite matrices: the
shift along the diagonal:

If A=(aij) is an infinite matrix, then A s denotes the matrix whose
entry at (i, j) is ai+1, j+1. We also denote (A s) s=A s2

and A=As0
=(A s) s − 1

.
i.e., we have a Z-action on infinite matrices.

With the help of this Z-action, we can expand An=(L+R)n in terms
of ai’s and bi’s.

We observe that

(1) RL=Ts.

(2) If B is any diagonal matrix, BR=RBs and BL=LBs − 1
.
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Let P be a product of n copies of either L or R’s such as LRRRL · · · R.
Each product corresponds to an element p in the direct product space of
two symbols over n places. Assume that we have k L matrices and n − k R
matrices. Then, using the properties (1) and (2), we have

P=˛L2k − nT sm1T sm2 · · · T smn − k, if k > n − k;
Rn − 2kT sm1T sm2 · · · T smk, if k < n − k;
T sm1T sm2 · · · T smk, if k=n − k,

where the sequence of integers (m1,..., mk) is determined by each element p.
For example,

RLRLRLRRR=TsT sT sRRR=RTs2
T s2

T s2
RR= · · · =R3T s4

T s4
T s4

,

and

LLLRLLR=L3T sT.

Since the product T sm1T sm2 · · · T smk is a diagonal matrix, we have that all
entries on the diagonal of P are zero except in the case of k=n − k. When
k=n − k, we have the entry at (0, 0) equal to

am1
bm1

am2
bm2

· · · amk
bmk

Therefore, we have a (n)
00 =0 if n is odd and

a (n)
00 = C

p ¥ P

am1
bm1

am2
bm2

· · · amk
bmk

,

where n=2k. L

Consequently, we have the formula for k:

kg= C
.

k=1

1
2k

C
p

am1
bm1

am2
bm2

· · · amk
bmk

.

Note that |ai | < E and |bi | < E are small. We can now easily obtain
approximate formulas of kg and thus, the potential function up to any
order we desire. For example, the second order approximate formula of the
potential function is
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j(x̄) % − log |fŒ(x0)| − log
“G0

“x0
(F(x̄))+

1
2

(a0b0+a1b1)

=−log |fŒ(x0)| − log
“G0

“x0
(F(x̄))+

1
2
R “G0

“x−1

“G0

“x0

“G−1

“x0

“G−1

“x−1

+

“G1

“x0

“G1

“x1

“G0

“x1

“G0

“x0

S .

6.2.2. The Lattice Zd Case

The previous calculation can be extended to the d dimensional lattice
case. We assume nearest neighbor interactions:

G=(Gi(x̄)), i=(i1, i2,..., id) ¥ Zd,

where the value of each component Gi(x̄) depends only on variables xj with

| j − i|=|j1 − i1 |+|j2 − i2 |+ · · · +|jd − id | [ 1.

Since the lattice is of dimension d, the matrix A now is decomposed
into a sum of 2d infinite matrices:

A=L1+R1+L1+R1+ · · · +Ld+Rd.

For each infinite matrix Lk=(l(k)
ij ), 1 [ k [ d, its entries are given as

follows. Let i=(i1, i2,..., ik − 1, ik, ik+1 · · · , id) ¥ Zd.

l (k)
ij =˛0 if j ] (i1, i2,..., ik − 1, ik − 1, ik+1,..., id)

“Gi

“xj

;“Gi

“xi
if j=(i1, i2,..., ik − 1, ik − 1, ik+1,..., id).

Similarly, the entries of the matrix Rk=(r(k)
ij ) are given by

r (k)
ij =˛0 if j ] (i1, i2,..., ik − 1, ik+1, ik+1,..., id)

“Gi

“xj

;“Gi

“xi
if j=(i1, i2,..., ik − 1, ik+1, ik+1,..., id).

To determine the entry a (n)
00 of the product

An=(L1+R1+L1+R1+ · · · +Ld+Rd)n,
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we expand the right hand side:

An=C
p

C1C2 · · · Cn,

where each Cl, 1 [ l [ n is either Lk or Rk and the sum is taken over the
direct product of 2d symbols over n places.

Note that for either type of matrices Lk or Rk, there is only one non-
zero entry on each row or column. Thus, the (0, 0) entry of the product
C1C2 · · · Cn is not zero only if we have the same number of Lk and Rk

among C1, C2,..., and Cn for every k, 1 [ k [ d. In particular, the (0, 0)
entry is zero if n is odd.

Denote

a (k)
i =l (k)

ij , j=(i1, i2,..., ik − 1, ik − 1, ik+1 · · · , id),

and

b (k)
i =r (k)

ji , j=(i1, i2,..., ik − 1, ik − 1, ik+1 · · · , id).

Let Pd={p=(C1C2 · · · C2m) : Cl ¥ {L1,..., Ld, R1,...Rd}, 0 [ l [ 2m and the
numbers of LkŒs and RkŒs are equal for each k, 0 [ k [ d}. We have the
following formula.

Proposition 3

a (n)
00 =˛0 if n is odd,

C
p ¥ Pd

a (k1)
i1

· · · a (km)
im

b (k1)
im+1

· · · b (km)
i2m

if n=2m,

where the sequence of integers (i1, i2,..., i2m) and (k1,..., km), 1 [ kl [ d are
determined by each p.

For example, if n=3 and p=(L1, L2, R1, L1, R2, R1), the correspond-
ing term in the sum (the entry at (0, 0) of the matrix L1L2R1L1R2R1) is

l (1)
0g1

l (2)
g1g2

r (1)
g2g3

l (1)
g3g4

r (2)
g4g5

r (1)
g50=a (1)

0 a (2)
g1

b (1)
g3

a (1)
g3

b (2)
g5

b (1)
0 =a (1)

0 a (2)
g1

a (1)
g3

b (1)
g3

b (2)
g5

b (1)
0 ,

where 0=(0,..., 0) ¥ Zd, g1=(−1, 0,..., 0), g2=(−1, −1, 0,..., 0), g3=
(0, −1, 0,..., 0), g4=g2=(−1, −1, 0,..., 0), and g5=g1=(−1, 0,..., 0).

Therefore, we have

kg= C
.

n=1

1
2n

C
p ¥ Pd

a (k1)
p1

· · · a (kn)
pn

b (k1)
pn+1

· · · b (kn)
p2n

.
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The second order approximation of kg can then be easily determined:

kg %
1
2
1 C

d

k=1
a (k)

0 b (k)
0 +a (k)

j b (k)
j
2 ,

where

a (k)
0 =l (k)

0i =
“G0

“xi

;“G0

“x0
, i=(0,..., 0, −1, 0,..., 0) ¥ Zd.

b (k)
0 =r (k)

i0 =
“Gi

“x0

;“Gi

“xi
, i =(0,..., 0, −1, 0,..., 0) ¥ Zd.

a (k)
j =l (k)

j0 =
“Gj

“x0

;“Gj

“xj
, j = (0,..., 0, 1, 0,..., 0) ¥ Zd.

b (k)
j =r (k)

0j =
“G0

“xj

;“G0

“x0
, j= (0,..., 0, 1, 0,..., 0) ¥ Zd.

6.3. Spatiotemporal Entropy of Coupled Map Lattices

The main application of the formula of the potential function is to
obtain spatiotemporal entropy of coupled map lattices. It is shown that the
entropy formula holds when the local hyperbolic set is an attractor. (17) One
can directly extend the formula to coupled expanding map lattices. Let
hm(y) denote the measure theoretical entropy of the Zd+1

+ -action y induced
by the map F and the spatial translations ss with respect to the SRB
measure m. We have

hm(y)=−F
M

j dm.

The second order approximation is given by

hm(y) % F
M

5log |fŒ(x0)|+log : “G0

“x0

: (F(x̄)) −
1
2

C
d

k=1
(a (k)

0 b (k)
0 +a (k)

j b (k)
j )6 dm,

where a (k)
0 , a (k)

j , b (k)
0 , b (k)

j are given in the previous section.
We call this entropy hm(y) spatiotemporal entropy since it is the

entropy of the Zd+1
+ -action y.
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Note that an explicit calculation of hm(y) in terms of maps G and F
involves an calculation of the SRB measure m which is still difficult to do.
One simple situation is when the local map f is a linear expanding map.
The potential function

j=−log |fŒ| − log : “G0

“x0

:+kg=−log p − log : “G0

“x0

:+kg,

where p is the degree of the map f. Therefore,

hm(y)=log p+F log : “G0

“x0

: dm − F kg dm

% log p+F log : “G0

“x0

: dm − F
1
2

(a0b0+a1b1) dm.

Thus, in this simple case we have the following conclusion.

The first order of the perturbation of the entropy is due to the local per-
turbation “G0

“x0
. The contribution from the nearest neighbor coupling is at most

of the second order in terms of the magnitude of the coupling.
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